Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

Penerapan Algoritma A* Untuk Pergerakan Dinamis NPC

Musuh Pada Game Metroidvania
Implementation A* Algorithm For Dynamic Enemy Movement in Metroidvania Game

Adrian Cavallino Pramana Putra
Teknik Informatika, Universitas Dian Nuswantoro
E-mail: 111201912286(@mhs.dinus.ac.id

Abstrak

Metroidvania adalah genre pada video game yang merupakan pengembangan dari genre
platformer, Genre ini berasal dari penggabungan nama 2 game platformer terkenal yaitu Super
Metroid dan Castlevania. Game dengan genre ini mengutamakan eksplorasi dan aksi dalam
progress level, dimana pemain diharuskan untuk menjelajahi map berukuran besar dan mencari
item atau benda benda yang memberikan upgrade kepada karakter pemain. Selain sistem progresi,
NPC musuh pada game Metroidvania cenderung memiliki kompleksitas dalam perilakunya
sehingga membuat game semakin menantang, meski begitu banyak juga game Metroidvania yang
mengabaikan perilaku musuh tersebut. Maka dari itu pada penelitian ini akan dibuat sebuah
algoritma pencarian rute terpendek guna membuat gerakan musuh menjadi semakin dinamis
dengan menggunakan algoritma A*.

Kata kunci: Al , Algoritma A*, Metroidvania, Pathfinding

Abstract

Metroidvania is a genre in video games which is the development of the platformer genre, this
genre comes from the merging of the names of 2 well-known platformer games namely Super
Metroid and Castlevania. Games with this genre prioritize exploration and action in level
progress, where players are required to explore large maps and look for items or objects that
provide upgrades to the player’s character. In addition to the progression system, enemy NPCs
in Metroidvania games tend to have complexity in their behavior, which makes the game more
challenging, even though there are also many Metroidvania games that ignore enemy behavior.
Therefore, in this study, an algorithm for finding the shortest route will be made to make enemy
movements more dynamic using the A* algorithm.

Keywords: A* Algorithm, Al, Metroidvania, Pathfinding

1. PENDAHULUAN

Metroidvania merupakan salah satu diantara banyaknya genre dari video game. Kata
Metroidvania berasal dari gabungan 2 nama video game yang cukup terkenal pada masanya di
platform NES (Nintendo Entertaintment System), yaitu Super Metroid dan Castlevania :
Symphony of The Night. Awalnya kedua game ini adalah game platformer, dimana hal yang
membedakan antara kedua game ini dengan game platformer biasa adalah sistem progresinya
dimana pada kedua game tersebut menawarkan peta yang lebih luas dan melebar secara vertikal
dan horizontal [1]. Selain progresinya, yang membedakan game metroidvania dengan game
platformer biasa adalah unsur action yang lebih menonjol dari platformer, dimana jika pada
platformer pemain hanya diharuskan melewati atau menginjak musuh yang bergerak mondar
mandir secara vertikal / horizontal, sedangkan pada metroidvania, karena pemain diberikan
variasi serangan yang lebih luas, maka musuh harus dibuat lebih menantang dan bergerak dengan
dinamis agar lebih sulit diprediksi.

NPC (Non-Playable Character) musuh merupakan salah satu komponen kunci pada game

103

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

metroidvania, karena perilaku dari NPC dapat menjadi sesuatu yang penting dari dibuatnya
sebuah game, contohnya pergerakannya [2]. Pergerakan NPC merupakan bagaimana NPC
tersebut melakukan gerakan tertentu pada saat saat tertentu, seperti ketika musuh sedang tidak
melakukan apapun atau biasa disebut /d/e maka musuh hanya akan bergerak kekanan dan kekiri
atau keatas dan kebawah, namun ketika pada radius tertentu terdapat pemain yang datang maka
musuh akan langsung bergerak mengejar pemain. Karena pada dasarnya game metroidvania
adalah game platformer, maka diperlukan mekanik utama pada platformer seperti melompat dan
bergerak secara horizontal untuk menghindari rintangan [3]. Hal yang sama dapat dilakukan pada
NPC musuh, akan tetapi jika hal tersebut dilakukan pemain akan dengan mudah merasa bosan
karena pergerakan musuh yang terkesan monotan dan terlalu mudah. Untuk itu perlu dibuat NPC
mudah yang dapat berperilaku selayaknya pemain. Untuk membuat game yang realistis
diperlukan sebuah kecerdasan buatan atau Artificial Intelegence pada NPC [4]. Dengan dibuatnya
sebuah NPC yang realistis dan bertindak selayaknya dikendalikan oleh pemain lain, pemain akan
merasakan adanya interaksi dengan objek dalam game sehingga pemain akan lebih menikmati
game tersebut [5]. Untuk membuat NPC realistis salah satu cara yang dapat dilakukan adalah
membuat NPC yang dapat melakukan pencarian rute, contohnya seperti musuh yang akan pergi
ke titik dimana pemain membuat kegaduhan dengan mencari rute yang paling pendek. Untuk
kasus tersebut, agar NPC dapat bergerak melalui titik terpendek diperlukan sebuah algoritma
pencarian rute terpendek [6]. Dimana algorima ini akan diuji dengan cara mengukur
kemampuannya dalam mencari dan membentuk jalur untuk pergerakan musuh [7].

Algoritma A* (A-star) merupakan salah satu dari beberapa algoritma pencarian rute
terpendek yang ada. A* merupakan pengembangan dari algoritma BFS (Best First Search) dengan
pembeda pada A* mempertimbangkan perkiraan jarak dari titik sekarang dengan titik tujuan atau
biasa disebut nilai heuristik [8]. Dengan adanya nilai heuristik, pemilihan jalur dapat dilakukan
dengan lebih optimal karena jika jalur memiliki nilai heuristik yang semaikin kecil maka besar
kemungkinan bahwa jalur tersebut merupakan jalur yang paling pendek untuk mencapai posisi
akhir / tujuan. Menurut hasil penelitian yang dilakukan oleh [9], dalam eksekusi perhitungan
algoritma A* diperlukan Open dan Closed list, dimana pada Open List akan berisikan node / rute
yang mengelilingi node sekarang, sedangkan pada Closed List akan berisikan node yang awalnya
pada Open List dan memiliki jarak paling pendek menuju tujuan diantara node lainnya . Selain
A*, algoritma yang sering digunakan untuk pencarian rute terpendek adalah algoritma Dijkstra,
namun yang membuat A* lebih baik dari Dijkstra adalah waktu komputasinya [10]. Hal ini
dikarenakan dasar dari algoritma Dijkstra adalah algoritma Bruteforce dimana algoritma ini akan
melakukan mencari semua rute yang memungkinkan untuk mencapai titik tujuan, kemudian
menentukan rute mana yang memiliki cost paling rendah, Sedangkan A* menentukan rute
terpendek berdasarkan hitungan cost dari setiap node, dimana cost dari tiap node dipengaruhi oleh
jarak dari titik awal ke node sekarang, dan node sekarang ke titik tujuan.

2. METODE PENELITIAN

Algoritma yang akan digunkan pada penelitian ini adalah algoritma A* sebagai salah satu
algoritma pencarian rute terpendek. Dimana perancangan algoritma A* akan dilakukan secara
bertahap dengan tahapan sebagai berikut :

1. Membuat map pada game menjadi grid yang akan digunakan sebagai node yang
akan menyimpan atribut yang diperlukan dalam pencarian rute terpendek. Untuk
itu akan digunakan fitur Tilemap yang telah disediakan oleh Unity.

2. Mempersiapkan 2 buah list yang akan menjadi open dan closed list, open list akan
berfungsi menyimpan node tetangga dari node sekarang sehingga tiap node
tetangga tersebut dapat di cek apakah node tersebut merupakan node terbaik atau
bukan, jika node tersebut merupakan node tersebut merupakan node terbaik maka
node tersebut akan masuk kedalam closed list dan menjadi node sekarang
(current node).

104

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

GOAL

Gambar 1 Map 1

3. Melakukan perhitungan untuk tiap node tetangga dari node sekarang, dimana
dengan menggunakan grid, tiap node tersebut akan memiliki 3 atribut, g cost
sebagai jarak antara titik sekarang dengan titik awal, & cost sebagai jarak
perkiraan antara titik sekarang dengan titik tujuan, dan f cost, dimana f cost akan
diperoleh dengan menggunakan rumus.

f(x) =g(x) +h(x)

Keterangan :

f{x) = cost total pada node ke- x

g(x)= jarak antara titik ke-x ke titik start

h(x)= estimasi jarak antara titik ke- x ke titik tujuan

4. Memastikan bahwa node dengan f cost terkecil merupakan node yang bisa
dilewati, dan merupakan sebuah obstacle atau penghalang. Sehingga jika node
terbaik merupakan letak obstacle, maka node tersebut tidak masuk ke closed list.

G=20
H=78
F=98
G=14 | G=10
H=74 | H=64
F=88 F=74
G=10
H=70 | sTaRT
F=80
G=14 | G=10 G=64 | G=74 |
H=74 | H=64 H=14 | H=10
F=88 | F=74 F=78 | F=84
=20 G=28 G=48 | G=58 | G=68
H=78 H=48 H=28 | H=24 | H=20
F=98 F=76 F=76 F=82 F=88
G=38
H=56
F=84

Gambar 2 Cost Jalur

5. Jika node sekarang sudah merupakan node yang dituju, maka akan diambil node
parent dari tiap node sebelum node tujuan. Dimana parent node adalah node yang
sebelumnya memilih node sekarang sebagai node terbaik. Sehingga ketika semua
node parent yang mengarah pada tujuan sudah ditemukan, maka akan terbentuk
path / jalur yang dapat ditempuh oleh musuh.

105

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

Setelah membuat perhitungan untuk mencari rute terpendek yang akan ditempuh oleh
NPC. Selanjutnya adalah membuat musuh untuk bergerak sesuai dengan path yang sudah
dibentuk. Untuk itu akan digunakan fungsi yang disediakan oleh Unity yaitu MoveTowards dan
juga menggunakan Collider agar musuh tidak dapat menembus obstacle.

3. HASIL DAN PEMBAHASAN

Pada penelitian ini pengujian dilakukan dengan menguji algoritma A* pada 10 bentuk
level pada game dimana tiap level akan memiliki bentuk yang berbeda sehingga musuh
diharuskan untuk menemukan rute paling optimal untuk menuju ke pemain. Kondisi untuk
memulai algoritma adalah ketika pemain melewati semak semak, maka musuh akan menuju titik
semak semak berada, dan akan langsung mengejar pemain jika melihatnya.

Gambar 3 Pergerakan pada Map 1

Pada map pertama, musuh sudah bisa menghindari obstacle berupa platform dengan
melewati rute terpendek yang dapat dilalui menuju lokasi semak semak, rute yang terbentuk dari
hasil perhitungan algoritma adalah tile berwarna kuning.

Gambar 4 Pergerakan pada Map 2

106

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

Gambar 5 Pergerakan pada Map »
Pada map kedua dan ketiga dibuat persimpangan dengan jalan buntu, dapat diketahui
algoritma berjalan dengan baik dikarenakan meskipun pada jalan buntu tersebut memiliki f cost

yang semakin kecil tetapi semua node tersebut tidak dapat menjadi path karena node tersebut
terhalang obstacle untuk mencapai tujuan.

Gambar 6 Pergerakan pada Map
Pada map keempat diberikan persimpangan yang mana persimpangan tersebut juga dapat

menuju ke titik goal, tetapi path yang terbentuk tetap path dengan jalur terpendek sehingga dapat
diketahui algoritma berjalan sesuai dengan yang diinginkan.

107

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

t

Gambar 7 Pergerakan pada ap 6

Gambar 8 Pergerakan pada Map 7

108

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

Gambar 9 Pergeraan pada Map &
Pada map 5, 6, 7, 8, pengujian dilakukan untuk mengukur kemampuan musuh untuk

bergerak memutari jalan yang tertutup oleh obstacle meskipun posisi musuh dan titik tujuannya
berdekatan.

Gambar 10 Pergeraka pad Map9

Map 9 menguji ketepatan jalur terpendek dimana letak musuh dan tujuannya diletakan
diketinggian yang sedikit berbeda dan diberikan persimpangan ke atas dan kebawah, dengan
meletakkan titik tujuan lebih tinggi daripada titik awal musuh, terdapat kemungkinan jalur keatas
akan diambil dikarenakan ketinggan tujuannya. Tetapi sesuai dengan path yang terbentuk musuh
memilih untuk melewati jalur bawah dikarenakan meskipun posisi tujuannya lebih tinggi daripada
titik awal musuh, mengambil jalur keatas akan memerlukan cost tambahan karena perlunya
memutari sedikit obstacle tambahan. Sehingga musuh mengambil jalur kebawah sebagai jalur
terpendek.

109

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

1

[

= = = = = slals]slsinle = & = st - slsla]sls]s]s = = s === w]s]sl=)E = = o)
L

Gambar 11 Pergerakan pada Map 10

Map terakhir berbentuk seperti labirin dimana musuh harus memutari dan memilih
persimpangan mana yang akan diambil untuk mencapai lokasi tujuan. Berdasarkan gambar,
meskipun objek tujuan sudah diletakkan pada tengah labirin, musuh tetap dapat menemukan path
terpendek untuk mencapai tujuan.

4. KESIMPULAN DAN SARAN

1. Kesimpulan
Kesimpulan dari penelitian ini adalah sebagai berikut :

a. Penggunaan Algoritma A* pada game metroidvania menghasilkan
potensi pergerakan musuh yang lebih luas, karena meskipun dengan
platform yang cukup kompleks musuh tetap bisa menemukan dan
berjalan menuju titik tujuan tanpa terhalang apapun.

b. Target dapat berupa objek apapun dalam game, sehingga tujuan dapat
disesuaikan dengan kebutuhan dan tujuan dari musuh tersebut.

2. Saran
Pada penelitian ini masih terdapat banyak kekurangan yang dapat diperbaiki pada
penelitian selanjutnya. Saran untuk penilitian selanjutnya adalah sebagai berikut :
a. Penentuan node yang akan ditempuh dapat lebih optimal jika digunakan
binary tree dibandingkan melakukan looping semua node tetangga.
b. Musuh dapat di spawn secara random sehingga pemain tidak tahu dari
mana musuh akan datang
c. Target dapat diubah menjadi objek bergerak.

DAFTAR PUSTAKA

[1] T. Gangopadhyay and A. A.-I. J. O. ENGLISH, “Scaffolding in Gamification:,,Metroidvania®“ and
Cognitive Behaviorism,” ijells.com, Accessed: Nov. 02, 2022. [Online]. Available:
https://www.ijells.com/wp-content/uploads/2021/11/October-2021-.pdf#page=66

[2] B. Tegar, D. Irianto, S. Andryana, and A. Gunaryati, “Penerapan Algoritma A-Star Dalam Mencari
Jalur Tercepat dan Pergerakan NonPlayer Character Pada Game Petualangan Labirin Tech-Edu,”

110

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

Techno Creative, Vol. 3, No. 2, Desember 2025: 103-111

JURNAL MEDIA INFORMATIKA BUDIDARMA, vol. 5, no. 3, pp. 953-962, Jul. 2021, doi:
10.30865/MIB.V513.3094.

M. Muiz Adziem Arrahman, J. Teknik Informatika, S. Pontianak J1 Merdeka No, K. Pontianak
Kota, K. Pontianak, and K. Barat, “Penerapan Collision Detection Pada Game Platformer ‘Culture
Seeker,”” E-JURNAL JUSITI : Jurnal Sistem Informasi dan Teknologi Informasi, vol. 11, no. 1, pp.
101-111, Jun. 2022, doi: 10.36774/JUSITL.V1111.915.

G. Mutagqin, ... J. F.-W. J. of, and undefined 2021, “Implementasi Metode Path Finding dengan
Penerapan Algoritma A-Star untuk Mencari Jalur Terpendek pada Game ‘Jumrah Launch Story,’”
Jjournal.walisongo.ac.id, vol. 3, no. 1, p. 43, 2021, doi: 10.21580/wjit.2021.3.1.7042.

R. Danil Fajri, M. A. Syahputra, T. Raja, M. Zaki, A. Saifudin, and I. Kusyadi, “Perancangan
Kecerdasan Buatan pada NPC Menggunakan UNITY 2D dan Perilakunya terhadap Player,” Jurnal
Informatika Universitas ~ Pamulang, vol. 6, no. 3, pp. 575-578, 2021, doi:
10.32493/INFORMATIKA.V613.11843.

L. Safira, P. Harsadi, S. Harjanto, P. Studi Informatika, and S. Sinar Nusantara, ‘“Penerapan
Navmesh Dengan Algoritma A Star Pathfinding Pada Game Edukasi 3d Go Green,” Jurnal
Teknologi Informasi dan Komunikasi (TIKomSiN), vol. 9, no. 1, pp. 17-26, Apr. 2021, doi:
10.30646/tikomsin.v9i1.540.

D. Y. Fallo and V. R. Bulu, “PENERAPAN ALGORITMA A STAR (A*) PADA GAME
LABIRIN,” Jurnal Pendidikan Teknologi Informasi (JUKANTI), vol. 5, no. 1, pp. 118-124, Apr.
2022, doi: 10.37792/JUKANTI.V5I1.459.

A. Hermawan and A. S. Tiwa, “Penerapan Algoritma A-Star untuk Pencarian Tempat Kuliner di
Kota Tangerang,” Jurnal Sistem dan Informatika (JSI), vol. 15, no. 2, pp. 104-114, May 2021, doi:
10.30864/JS1.V1512.335.

A. S.-P. S. N. R. dan Teknologi and undefined 2021, “IMPLEMENTASI KECERDASAN
BUATAN MENGGUNAKAN ALGORITMA A-STAR DAN REPULSIVE FIELD PADA
SIMULASI GAME 3D:---,” journal.unpar.ac.id, 2021, Accessed: Nov. 02, 2022. [Online].
Available: https://journal.unpar.ac.id/index.php/ritektra/article/view/4835

M. Wicaksono, M. J. Wicaksono, 1. Istiadi, I. D. Wijaya, F. Marisa, and S. W. Iriananda, “Museum
Angkut Virtual Tour Dengan Optimasi Penelusuran Menggunakan Algoritma A-Star,” JIMP
(Jurnal Informatika Merdeka Pasuruan), vol. 6, no. 2, Mar. 2022, doi: 10.37438/jimp.v6i2.286.

111

